Estrogen receptor alpha inhibits senescence-like phenotype and facilitates transformation induced by oncogenic ras in human mammary epithelial cells

نویسندگان

  • Zhao Liu
  • Long Wang
  • Junhua Yang
  • Abhik Bandyopadhyay
  • Virginia Kaklamani
  • Shui Wang
  • Lu-Zhe Sun
چکیده

Exposure to estrogen has long been associated with an increased risk of developing breast cancer. However, how estrogen signaling promotes breast carcinogenesis remains elusive. Senescence is known as an important protective response to oncogenic events. We aimed to elucidate the role of estrogen receptor alpha (ERα) on senescence in transformed human mammary epithelial cells and breast cancer cells. Our results show that ectopic expression of oncoprotein H-ras-V12 in immortalized human mammary epithelial cells (HMEC) significantly inhibited the phosphorylation of the retinoblastoma protein (Rb) and increased the activity of the senescence-associated beta-galactosidase (SA-β-Gal). These senescence-like phenotypes were reversed by ectopic expression of ERα. Similar inhibition of the H-ras-V12-induced SA-β-Gal activity by ERα was also observed in the human mammary epithelial MCF-10A cells. Co-expression of ERα and H-ras-V12 resulted in HMEC anchorage-independent growth in vitro and tumor formation in vivo. Furthermore, inhibition of ERα expression induced senescence-like phenotypes in ERα positive human breast cancer cells such as increased activity of SA-β-Gal, decreased phosphorylation of RB, and loss of mitogenic activity. Thus, the suppression of cellular senescence induced by oncogenic signals may be a major mechanism by which ERα promotes breast carcinogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells

The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectru...

متن کامل

Estrogen-induced mammary fibroadenoma in a lamb: hormonal and immunohistochemical aspects

A fibroadenoma was diagnosed in the mammary gland of a lamb by immunohistochemical method andmeasurement of oestradiol hormone. The tumor was characterized by an encapsulated firm mass with acreamy-white cut surface. Histologically, it consisted of variably-sized sinus ducts, covered by a single ormultiple layers of proliferated epithelial cells, and embedded in a loose connective tissue. Immun...

متن کامل

Human Mut T homolog 1 (MTH1)

Oncogenic RAS-induced reactive oxygen species (ROS) trigger barriers to cell transformation and cancer progression through tumor-suppressive responses such as cellular senescence or cell death. We have recently shown that oncogenic RAS-induced DNA damage and attendant premature senescence can be prevented by overexpressing human MutT Homolog 1 (MTH1), the major mammalian detoxifier of the oxidi...

متن کامل

TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells.

Oncogene-induced senescence (OIS), the proliferative arrest engaged in response to persistent oncogene activation, serves as an important tumor-suppressive barrier. We show here that finite lifespan human mammary epithelial cells (HMEC) undergo a p16/RB- and p53-independent OIS in response to oncogenic RAS that requires TGF-β signaling. Suppression of TGF-β signaling by expression of a dominant...

متن کامل

Cadmium Malignantly Transforms Normal Human Breast Epithelial Cells into a Basal-like Phenotype

BACKGROUND Breast cancer has recently been linked to cadmium exposure. Although not uniformly supported, it is hypothesized that cadmium acts as a metalloestrogenic carcinogen via the estrogen receptor (ER). Thus, we studied the effects of chronic exposure to cadmium on the normal human breast epithelial cell line MCF-10A, which is ER-negative but can convert to ER-positive during malignant tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016